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1.0 BACKGROUND

There is a need to improve upon our current capability to detect and identify
atmospheric nuclear tests. In particular, it appears that circumstances can
arise where considerable uncertainty may surround the origin and source
location of anomalous signals detected by the existing atmospheric sur-
velllance systems. It is generally agreed that the uncertainty could be
significantly reduced with supplemental information provided by an infrasonic
monitoring system. The purpose of this research program is to investigate a
new method of acquiring the desired infrasonic information.

Atmospheric nuclear explosions produce pressure pulses which are potentially
detectable at long ranges from the source. The principal energy of these
pulses has been found to lie in the 0.001 - 1 Hz bandwidths. In the past,
the capability to detect the infrasonic signals from atmospheric nuclear
tests was vested in a network of microbarograph arrays. These arrays, which
now have been largely abandoned, consisted of four or more sensors which had
the intrinsic sensitivity to resolve atmospheric pressure changes as small as
a few hundredths of a microbar in the bandwidth of interest for nuclear test
monitoring. Unfortunately, this sensitivity could rarely be used to prac-
tical advantage to detect infrasonic signals because of the relatively large
atmospheric pressure fluctuations intermmittently created by the local winds.
In order to combat the wind noise problem, a "pipe array” (cf. Daniels, 1959)
was attached to the inlet of the microbarograph. This device is a passive
wavelength filter which consists of a hollow pipe, less than 3 cm in
diameter, with maximum linear dimensions on the order of several hundred
meters or more, and pressure inlet ports placed at 2~4 meter intervals.

Given the assumption that the wind noise is uncorrelated between inlet ports
while the infrasonic signal remains correlated, it is then possible to obtain
an improvement in infrasonic SNR approaching‘Vﬁ'where N is the number of
inlets. Experiments demonstrated that while such improvements were indeed
possible at relatively high frequencies (say greater than .2 - .3 Hz), the
state of organization of the wind-generated noise generally precluded
achievement of significant infrasonic SNR improvement at lower frequencies
(MacDonald et. al., 1971). Thus, the "pipe array” is of limited value 1if one
is interested in enhancing infrasonic SNR's over the entire frequency range
of Interest. Another approach which was under serious consideration in the
early 1970's was to increase the number of microbarographs in the arrays by
at least a factor of 3 and to rely on multichannel processing techniques to
improve the infrasonic SNR (cf. Teledyne Geotech, 1971). While implementation
of this approach 1is certainly well within the current state of the art, the
probable cost of developing and operating an advanced infrasonic network
leads to the consideration of alternative methods.

During the early 1970's, the AFOSR sponsored basic studies of the rela-
tionship between local atmospheric pressure changes and low-frequency seismic
noise (Sorrells, 1971; Sorrells and Goforth, 1973; Sorrells and Douze 1974;
Savino et al, 1972; Savino and Rynn, 1972). An important result of these
investigations was the prediction and experimental confimation that the
quasi-static earth movements triggered by the passage of infrasonic waves
could be detected at the outputs of a sensitive long-period seismograph
system. Equally important was the prediction and observation that the earth
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acts as a passive wavelength filter with respect to the atmospheric pressure
fields, selectively attenuating the shorter wavelength components to a
greater degree than the longer wavelength components. The properties of
this filter are controlled by the local distribution of elastic constants
and the depth of observation and are virtually independent of the state of
organization of the inmput field. Since, for a given frequency, the convec-

tive wavelength of wind-generated pressure noise may be an order of magni- ¥
tude shorter than that of an infrasonic signal, relatively large SNR gains
are theoretically possible regardless of the state of organization of the J

signal and noise field. This point is illustrated by the results shown in
figure 1. This 1s the theoretical infrasonic SNR gain, predicted for obser-
vations made at a depth of 100 meters in a homogenous, isotropic, perfectly
elastic half space with equivalent Lam€ constants. The results shown are
appropriate for a vertical seismograph and assume that the propagation speed
of the signal 1s 330 m/sec while the convection velocity of the wind-
generated noise 1s 10 m/sec. Observe that the predicted SNR gain is greater
than 30 dB throughout the entire frequency range of interest. Conceptually
then, the earth-selsmograph system may be thought of as a functlonal equiva-
lent to the pipe array-microbarograph system with the added advantage that
the response of the former system is virtually independent of the state of
organization of the signal and noise fields. Thus, a high-quality, long-
period seismograph system, coupled with a single microbarograph to aid in the
discrimination between seismic and atmospherically induced earth movements,
could conceivably provide the basic elements of a new infrasonic monitoring
network. The practical implications of this observation are worth noting.
Instead of developing and deploying a new generation of microbarograph
arrays, it may be possible to acquire a similar capability by adding mic -o-
barographs to the instrumentation already in place at selected sites in an
existing seismic network. The cost of acquiring an infrasonic monitoring
capability in this manner will be substantially lower than the deployment and
operation of an independent network of microbarograph arrays. The basic
objective of the research program currently underway is to provide the tech-
nical basis for evaluating seismograph-microbarograph options.

The basic structure of the research program may be deduced from the statement
of work shown in figure 2. The purpose of this report is to summarize
progress made during the first six months of the program.
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Task 1.

Task 2.

Task 3.

Acquire a combined microbarometric and seismic data base
pertaining to infrasonic signals, subsonic noise, and seismic
background noise.

Utilize the acquired data base to experimentally assess the current
capability to detect and identify infrasonic signals with combina-
tions of the outputs of a microbarograph and a three-component

inertial seismograph system.

Investigate the feasibility of acquiring muliti-component earth
strain data in addition to microbarometric and inertial seismic
data to assist in the detection and identification of infrasonic
signal. Also investigate modifications to existing sensor systems

and data processing scheme which would contribute to the

detection and identification of both infrasonic as well as seismic

signals.

FIGURE 2. SUMMARY STATEMENT OF WORK

G 12344




2.0 DATA ACQUISITION

The primary objectives of the first phase of the research program was to
establish a temporary observatory for the simultaneous acquisition of data
pertaining to earth movements and atmospheric pressure oscillations. This
objective has been accomplished, and data are now being routinely recorded
from a five-element microbarograph array and a three-component KS-36000 long-
period seismograph system located at a depth of 150 meters at a site near
McKinney, Texas. The current configuration of the microbarograph array and
its location with respect to the seismograph system is shown in figure 3.

The microbarographs are of the M-4 generation and were loaned to the program
by S.M.U. A 50~foot length of garden hose with 0.75 inch inside diameter is
attached to the inlet port of each microbarograph. Hypodermic needles are
inserted at intervals of approximately 1 meter to provide some suppression of
very short wavelength atmospheric turbulence. An anemometer is also
installed near the borehole containing the seismograph system to provide con-
tinuous information on the local surface wind speeds.

The seismograph is a KS-36000 three-component system and 1s located at
33°14'56"N latitude, 96°39'07"W longitude at a depth of 152 meters. Data
from all sensing units are transmitted via cable to a central data collection
facility where they are conditioned, then recorded on 35mm film for moni-
toring purposes. In addition, the data are sampled at 0.5 second intervals
and stored on digital magnetic tape for future data processing and analysis.
A block diagram of the data acquisition system is shown in figure 4. The
sensor system responses are shown in figure 5.
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3.0 DATA ANALYSIS

3.1 PRESSURE~DISPLACEMENT TRANSFER FUNCTIONS

The passage of an infrasonic wave creates quasi-static earth movements which
may be detected at the output of a seismograph system. The amplitude of
these earth movements may be related to the amplitude of the infrasonic wave
through a transfer function whose form is dependent upon the local distribu-
tion of elastic constants, the speed of the infrasonic wave and the depth of
observation (Sorrells, 1971). By approximating the earth structure at the
McKinney observatory as a layered elastic solid, theoretical transfer func-
tions may be calculated using techniques described by Sorrells and Goforth,
1973. Vertical and horizontal transfer functions appropriate for an obser-
vational depth of 150 meters at McKinney, Texas, are shown in figure 6. The
apparent horizontal displacement transfer function is the sum of the true
horizontal displacement and the apparent horizontal displacements caused by
earth tilts. It is important to note that for a pressure wave propagating at
infrasonic speeds, the vertical displacements will generally be greater than
the apparent horizontal displacements at frequencies higher than about 0.006
Hz. As shown in figure 7, this crossover point shifts rapidly to higher fre-
quencies as the propagation speed of the pressure disturbance decreases.

Now, generally speaking, the propagation speed of wind-related turbulence is
approximately equal to the mean wind speed which rarely exceeds 10 m/sec for
any sustained length of time. The comparisons of vertical and horizontal
earth movements provide the basis for a rapid means of roughly classifying
pressure-related earth movements into potential signal and noise categories;
i.e., if the observed horizontal component of earth movement is greater than
the observed vertical component and its frequency is greater than 0.006 Hz,
then, the disturbances can be safely classified as noise. If these criteria
are not satisfied, then the disturbance has a high probability of being

j infrasonic in nature. This technique 18 now being implemented to select data
records for further processing and analysis.
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3.2 INFRASONIC SNR'S: PRELIMINARY RESULTS

The primary objective of the initial phase of this experiment was to
establish a temporary facility for the simultaneous acquisition of digital
data pertaining to local earth movements and atmospheric pressure
oscillation. This objective has been achieved, and we are now in the process
of experimentally evaluating the combined use of seismic and microbarametric
data to detect and identify infrasonic signals. Preliminary results bearing
on this subject are briefly summarized in the following paragraphs.

It was shown In an earlier section that it was theoretically possible to
obtain a significant improvement in the infrasonic signal-to-wind noise ratio
by transforming the detection problem into the seismic regime. In
particular, it was shown that because of the passive wavelength filter pro-
perties of the earth with respect to atmospheric pressure variations, the
infrasonic signal-to-wind noise ratio must always be greater at the output of
a vertical seismograph than at the output of a microbarograph. In practice,
however, the actual gain in SNR obtained by utilizing a vertical seismograph
system will be limited by the existence of earth noise that is unrelated to
atmospheric pressure variations. At the preseant time, there is little
experimental evidence bearing upon this subject. Thus, a first objective of
the data analysis 1s to quantitatively assess the nature of this limitation.
The approach currently being followed 1is outlined below.

Let m (t) and u, (t) denote the outputs of a microbarograph and a vertical
seismograph, respectively. Then, when the wind is blowing and an infrasonic
signal 1is present:

o(t) = ry * (pg + py) ()
Where r, is the response of the microbarograph, pg is the infrusonic pressure

signal, p, 1s the turbulent pressure noise created by the wind and (*) deno-
tes convolution. Similarly,

uyg(t) = r, *(8z8 * Pg * 8zn * Py * 1) (2)
Where g,g and g,, are the Greens functions for the vertical component of
displacement caused by infrasonic signal and wind noise, respectively. For a
vertical seismograph located at a depth of 150 meters, it can be shown that
(8ze * PR)D> << ()% (3)
so that for our purposes, equation 2 may be approximated as:
“z(t) = rz*(st * Psg + nz) (4)
Now, the corresponding power spectra may be written as:

M(w)

,“mlz (Pg + Pp) (5)
le|2 (Iczslz Pg + N;) (6)

[}

Ug(w)

Where M, U,, Pg, P, and Ny are the power spectral density functions associated
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with m, u,, pg, p, and n, and Ry, R, and G,; are the complex terms for func-
tions assoclated with ry, r, and g,,. Rewriting equation 6 as:

uz NB
= Pg +
'Rz I2 IGZS Iz st 2
, 7
= Pg + P,

and rewriting equation 5 as:
M €))

[ 2

it can be seen that the term

9)
P'n = 5 (
R, z8

can be thought of as an equivalent pressure nolse power spectral density

estimate for the earth motion field.

Let (SNR), ard (SNR), be the signal-to-noise ratios for the earth motiom and
pressure fields, then

P 10
(o), - 28 (10)
Pn
and
(SNR), = —=
Pn (11)
The ratilo
_ (sMR), (12)
zm (SMR),,

is thus a measure of the actual improvement in infrasonic signal-to-noise
ratios that can be obtained through the use of a vertical seismograph.
Notice that

Py (13)
P,

Izm

Thus, if we confine our attention to intervals when Py = 0 and, 1f we know
the moduli of the transfer functions Ry, R, and Gg,, we can obtain an esti-
mate of I,, from the outputs of a microbarograph and a vertical seismograph.
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We are currently making estimates of I,, during various states of atmospheric
turbulence given the assumption that the modulif of the transfer functions
shown in figures 5 and 6 accurately depict the instrumental and earth
responge functions. An important preliminary result is illustrated in
figures 8a and 8b. Here, we compare estimates of P (f) and P',(f) in a band
extending from approximately 0.002 to 0.5 Hz (figure 8a) and display the
corresponding estimate of Izm(f) (figure 8b). These results were obtained
from spectral estimates of outputs of the vertical seismograph and a nearby
surface microbarograph during an interval of gusty winds. The spectral esti-
mates were mude by applying the Welch method of averaging periodograms to
time series consisting of 10 blocks of 1024 points. The important point
1llustrated by these results is that the estimated value of P' (f) is signi-
ficantly lower than the estimates of P,(f) over a frequency range extending
from approximately 0.005 to 0.05 Hz. This means, in effect, that within this
frequency band, the infrasonic SNR will be greater at the output of a ver-
tical seismograph than at the output of a microbarograph during this
interval. The estimate of Izm(f), which is shown in figure 8b, indicates
that the increase in infrasonic SNR's can be as much as 15 dB in a narrow
frequency band near 0.03 Hz. These results are encouraging in that they are
qualitatively consistent with earlier observations made at Grand Saline,
Texas, (Sorrells et al, 1971) which indicated that over a similar frequency
range, the infrasonic SNR's for a presumed atmospheric nuclear explosion were
higher at the output of a vertical seismograph located at a depth of approxi-
mately 180 meters than at the output of a microbarograph located at the
surface.

Similar calculations have been made for data collected during calm intervals.
These results are shown in figures 9a and 9b. Observe that, under these
circumstances, P (f) 1s less than P' (f) throughout the entire bandwidth of
interest. These results simply serve to illustrate the obvious point that in
the absence of wind-generated atmospheric pressure changes, a microbarograph
will be superior to a vertical seismograph for the detection of infrasonic
waves.
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FIGURE 9. (a) COMPARISON OF OBSERVED (SOLID LINE) AND SEISMIC EQUIVALENT (DASHED
LINE) PRESSURE NOISE SPECTRAL ESTIMATES, (b) ESTIMATED INFRASONIC SNR
ENHANCEMENT. DATA SHOWN WERE COLLECTED DURING A CALM INTERVAL.
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4.0 FUTURE RESEARCH DIRECTIONS

The preliminary results presented in the previous section increase our con-
fidence that, during intervals of atmospheric turbulence, the infrasonic SNR
will be greater at the output of a vertical seismograph than at the output of
a microbarograph over a significant fraction of the frequency range of
interest for atmospheric nuclear test detection. While these results show
promise, more work needs to be done not only to document the gain in the
infrasonic SNR both as a function of frequency and the intensity of
atmospheric turbulence, but also to refine our estimates. In particular,
experimental confirmation of predicted pressure-displacement transfer func-
tion 1s needed since it plays a significant role in estimation of the SNR
gain.

It is also important, for the purposes of this program, to renew investiga-
tions into the relationship between the yleld of an atmospheric nuclear
explosion and the spectrum of the infrasonic signal which it generates.
While it 1s generally recognized that the infrasonic spectrum shifts toward
higher frequencies as the yleld decreases, the precise nature of the rela-
tionship is poorly known, particularly in the kiloton yield ramge. A
knowledge of this relationship is important in that it would allow us to
translate the observed frequency limits currently being detemmined to a yield
range. Be knowing the yleld range over which enhanced infrasonic SNR's are
possible, the technical feasibility of developing new technology to extend
the currently observed frequency range can be realistically assessed.

Finally, the program should provide a reliable estimate of the infrasonic
signal detection threshold for a combination of sensors consisting of a
three-component seismograph and a microbarograph. It is probable that this
threshold can be determined directly from the experimental data base for fre-
quencies lower than about 0.02 Hz utilizing naturally occurring infrasonic
signals. At higher frequencies, an indirect method of estimation may be
needed.
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